
DELAY MINIMIZATION IN PASS TRANSISTOR LOGIC USE OF
BINARY DECISION DIAGRAM

P.W.C. PRASAD M. RASEEN S. SASIKUMARAN

Faculty of Information
Science and Technology,
Multimedia University,

Melaka, Malaysia.

College of Information
Technology,

United Arab Emirates
University, Al Ain, UAE

Faculty of Science and
Information Technology,

AL-Zaytoonah University,
Amman, Jordan

m2160062@mmu.edu.my Mohamed.raseen@uaeu.ac.ae sasi_kumaran2002@yahoo.co.in

ABSTRACT: Pass Transistor Logic (PTL) offer
great promise than Static CMOS for the development of
chips that can operate in high speeds. Since the delay in
a pass-transistor chain is proportional to its length, it is
required to minimize the longest evaluation time.
Minimization of longest evaluation time can improve
the performance of the circuit, and have a strong
influence on the quality of the final implementation.
Our approach is based on the use of Binary Decision
diagram (BDD) to minimize the longest evaluation
time. We perform a novel static variable ordering
techniques which is based on the complexity of each
function. Benchmark results show an encouraging
approach towards minimizing the longest evaluation
time.

Key Words: Pass Transistor Logic, Evaluation time,
Binary Decision Diagram

1. INTRODUCTION

Pass transistor logic offers a good area/power-delay
trade-off alternative to static CMOS circuits in today's
technologies. It may continue to do so even when
leakage power becomes dominant in sub-100 nano-
meter era due to smaller area implementations as
compared to the corresponding static CMOS
implementations [1]. One of the main problems with the
pass transistor network is the presence of long paths:
the delay of a chain of n pass transistors is proportional
to n2. The path length can be reduced by inserting
buffers, but this increases area [2].

In general the evaluation time is proportional to the
path length of BDD. Therefore minimization of path
length can be achieved by minimizing the evaluation
time of logic function [3]. The minimization of average
path length (APL) proposed in [4], [5] reduces the
average evaluation time of logic functions. The
minimization of the average path length leads to circuits
with a smaller depth on the paths from Root to Terminal
nodes. By this, the circuit is optimized for speed on the
one hand and on the other hand the number of very long
paths is reduced [6]. The minimization of Longest path

length (LPL) of BDD can reduce the longest evaluation
time which is more important for PTL, since the
minimization of the longest evaluation time will
improve the performance of the circuit [3].

During the last two decades BDDs have achieved
great popularity as a method for representing Boolean
functions. The BDDs advantages as canonical
representations were observed and recognized by
Bryant [7], [8]. The success of this kind of
representation has attracted many researchers in the
area of synthesis and verification of VLSI and CAD
systems [9], [10] and BDDs became very popular data
structures, since they allow efficient representation of
most of today’s practical Boolean functions. The
efficiency of BDDs is directly related to the size of their
graph representations [11]. It appears that the node
count is a good measurement for the complexity of the
BDD. It is known that the complexity of BDDs is very
sensitive to the ordering of the input variables [12].

Determining an optimal variable ordering is an
NP-hard problem [13]. In the past many heuristic
approaches have been proposed, that are based on Static
variable ordering (SVO) algorithms [14], [15] that
operate on a given circuit net-list and exploit topologies
in order to find a good variable ordering, and Dynamic
variable ordering (DVO) algorithms [16], [17], which
assume that SVO has been successfully applied and
operate on the resultant ROBDD to reduce its size
through the exchange of variables [18]. A good
ordering can lead to a smaller BDD and faster runtime,
whereas a bad ordering can lead to an exponential
growth in the size of BDD and hence can exceed the
available memory. But most of these methods cannot
guarantee an optimal result and experimental studies
have shown that they are often up to a factor of two
away from the best known solution [12]. In the current
implementation, we perform a novel static variable
ordering algorithm based on the manipulation of the
Boolean function, which will reduce the longest
evaluation time of BDD. The remaining of this paper is
divided as follows: in the second section, necessary
terminology and definitions are given. The third section
explains the proposed method, and in the fourth section
experimental results are given and interpreted. We
conclude our paper with future developments of this
research work.

2. PRELIMINARIES

Basic definitions for BDDs and PTLs are given in
[3], [7], [11], [19]. In the following we review some of
these definitions.

Definition 1: A BDD is a directed acyclic graph (DAG).
The graph has two sink nodes labeled 0 and 1
representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variables v and has
two out-edges labeled 1 (or then) and 0 (or else). Each
non-sink node represents the Boolean function
corresponding to its 1 edge if v=1, or the Boolean
function corresponding to its 0 edge if v=0.

Definition 2: An OBDD is a BDD in which each
variable is encountered no more than once in any path
and always in the same order along each path.

Definition 3: An ROBDD is a BDD with the following
properties.

(i) There are no redundant nodes in which both of
the two edges leaving the node point to the same
next node present within the graph. If such a
node exists it is removed and the incoming edges
redirected to the following node.

(ii) If two nodes point to two identical sub-graphs
(i.e. Isomorphic sub-graphs) then one sub−graph
will be removed and the remaining one will be
shared by the two nodes.

Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a terminal node is a Path.
The number of non-terminal nodes on the path is the
Path Length.

Definition 5: The Longest Path Length (LPL) of a BDD
denoted by LPL (BDD), is the Length of the Longest
Path Length.

3. PROPOSED METHOD

The proposed method is a static variable ordering
technique [20], which uses the input Boolean
expression to find the variable order which is used to
minimize the longest evaluation time. It is based on the
single level Boolean function; hence if a Boolean
function is multilevel then it is converted to single level
function prior to applying the proposed method. MVSIS
(Multi Valued Logic Synthesis Tool) Version 1.0 is
used for the conversion of functions from multilevel to
single level. The proposed method selects the next
variable in order based on the complexity of sub-
functions derived by assigning logic 1 and logic 0 for
that variable. The variable that produces sub-functions
with minimum complexity is given priority over other
variables. The complexity of the sub-functions is
evaluated based on the number of variables (NV),

number of product terms (NPT) and the number of
variable occurrences (NVO). Using this method we can
produce the BDD graph with shortest possible paths
among each node including the terminal nodes, which
will eventually, reduces the longest evaluation time.
The complete steps of the proposed method are
explained in the following algorithm:

Step1: The number of inputs (N) of the Boolean

function is recorded. The input variables are
named as X1, X2, X3…XN;

Step 2: Set the variable counter (M) to 1;
Step 3: Substitute logic 0 for variable XM in the input

function;
Step 4: Simplify the resulting function using

McCluskey simplification method;
Step 5: Record the number of variables (NV), the

number of product terms (NPT) and the number
of variable occurrences (NVO);

Step 6: Substitute logic 1 for variable XM in the input
function and repeat steps 4 and 5;

Step 7: Record the total of NV, NPT and NVO obtained
in steps 5 and 6;

Step 8: Repeat steps 3 to 7 for M = 2 to N;
Step 9: The variable that produced the least NV is

selected as next variable in the order;
Step 10: If two or more variables have the same NV

then selection is based on the least NPT;
Step 11: If two or more variables have the same NPT

then selection is based on the least NVO;
Step 12: If still there are two or more variables that

have equal NV, NPT and NVO, then the first of
these variables is selected;

Step 13: The selected variable is then substituted for 0
and 1 in the input function and two sub-
expressions are obtained;

Step 14: Steps 1 to 12 are repeated for the two new sub-
expressions till we get the second variable of the
order;

Step 15: The above steps are repeated for 2, 4, 8 …..
Sub-expressions until we find all the variables of
the order;

For each the iterations described above, we note that

the number of expressions increases but complexity of
the expressions decreases. This decrease in complexity
reduces the procedure to find the variables that come
next in the variable order. The obtained variable order is
used to build the BDD and computer the LPL using
CUDD. The following example illustrates the proposed
algorithm.

Example: Consider the Boolean function (1) with 4
variables x1, x2, x3 and x4.

31432421 xxxxxxxxF ⋅+⋅⋅+⋅⋅= (1)

Substituting logic 0 and logic 1 for the four variables x1,
x2, x3 and x4 we get the following sub-functions:

4321 0 xxxx ⋅⋅⇒= (2)

323432421 1 xxxxxxxxx +⇒+⋅⋅+⋅⇒= (3)

312 0 xxx ⋅⇒= (4)

3143412 1 xxxxxxx ⋅+⋅+⋅⇒= (5)

4221424213 0 xxxxxxxxxx ⋅+⋅⇒⋅+⋅⋅⇒= (6)

114213 1 xxxxxx ⇒+⋅⋅⇒= (7)
31214 0 xxxxx ⋅+⋅⇒= (8)

31324 1 xxxxx ⋅+⋅⇒= (9)

The parameters NV, NPT and NVO for the above six
sub-functions are shown the table 1.

Table 1.

The main title (on the first page) should begin 1-3/8
inches (3.49 cm) from the top edge of the page,
centered, and in Times 14-point, boldface type.
Capitalize the first letter of nouns, pronouns, verbs,
adjectives, and adverbs; do not capitalize articles,
coordinate conjunctions, or prepositions (unless the title
begins with such a word). Leave two 12-point blank
lines after the title.

From table 1, variable x3 is selected as the first
variable of the order since it has the least total of NV
compared to other variables. Two new sub-expressions
(5) and (6) are obtained from substituting 03 =x and

13 =x respectively. From expressions (5) and (6) we
re-start the procedure to find the second variable of the
order. Substituting logic 0 and logic 1 for the three
variables x1, x2 and x4 in the expressions (5) and (6) we
obtain the following sub-functions:

4213 0,0 xxxx ⋅⇒== 213 1,0 xxx ⇒==

00,1 13 ⇒== xx 11,1 13 ⇒== xx

00,0 23 ⇒== xx 4123 1,0 xxxx +⇒==

123 0,1 xxx ⇒== 123 1,1 xxx ⇒==

2143 0,0 xxxx ⋅⋅⇒== 243 1,0 xxx ⇒==

143 0,1 xxx ⇒== 143 1,1 xxx ⇒==

Table 2 indicated the values of NV, NPT and NVO
for the twelve sub functions. From table 2 the variable

x1 is selected as the next variable since it has the least
number of total NV. It should be noted here that, so far
in this example there was no a need to check the
parameters NPT and NVO, since NV was always the
least. The first two variables are selected, hence four
sub- expressions are obtained from the substitution set
(x3, x1) = (0,0), (0,1), (1,0) and (1,1). The 4 sub-
functions can be used to find the third variable of the
order. Performing the same procedure describe above
one can find all the variables of the order. In our
example, after doing all the steps we obtain the variable
order x3, x1, x2, and x4. This variable order is used to
build the BDD and find the LPL.

Table 2.

4. EXPERIMENTAL RESULTS

To experimentally evaluate the algorithm presented
in this paper, we assembled two set of results: the first
set derives directly from the 3 variable ordering
techniques (Symmetric Sifting, Swapping and Window
Permutation) in CUDD package and the second set
from the proposed method. Both set of results were
observed using the Colorado University Decision
Diagram (CUDD) package [21] on a Pentium IV
machine with 512 MB RAMs. Table 3 summarizes the
results for selected ISCAS benchmark circuits [22],
[23], [24]. In Table 3 the first column shows a list of
selected ISCAS benchmark circuits we have used to
demonstrate the performance of the proposed method.
Columns 2, 4 and 6 illustrate the results obtained for
three CUDD variable reordering methods, namely the
swapping, symmetric sifting and window permutation
in terms of number of nodes and Columns 3, 5 and 7
shows the results for the same in terms on LPL. The
results shown in column 8 and 9 are from the
implementation of our proposed method in terms of
number of nodes and LPL respectively. The Gain
factors of the proposed method against the three CUDD
methods are denoting in Column 10 to 12.
 The obtained results indicate the efficiency of the
proposed method compared to other CUDD methods in
term of minimization of Longest Path Length and
Number of nodes. In general, the obtained results in
Table 3 indicate that the number of nodes decreases in
more than 90% of the benchmarks compared to the
Swapping and Window Permutation and almost 50%
compared to the Symmetric sifts reordering method.

The circuit’s i1, i6, X2, apex4, B9, pm1, clip, B12, mux
and cm150a produces maximum gain by proposed
algorithm compared to all the three CUDD methods.
The benchmarks i7, X4, cc, squar5, misex2 and cm151a
achieved better gain than two of the CUDD methods.

The circuits alu2, decod, 5xp1, con1, cm85a, cm162a
and cm163a produces equally good results as CUDD
methods.

 Table 3.

5. CONCLUSIONS AND FUTURE

WORK

A new algorithm for minimizing the Evaluation time in
BDD has been developed. The algorithm has been
implemented using ISCAS benchmark circuits and the
results have been compared with the three CUDD
reordering methods which show the applicability of
Longest Path Length of BDD to Pass Transistor Logic
circuits. From the results obtained so far, it is quite clear
that the minimization of the Longest Evaluation tine of
BDD is the most important factor in determining the
quality of the final implementation. Our future work
and developments will be concentrated on investigating
the LPL minimization for larger Scale benchmark
circuits.

REFERENCES

1. R. S. Shelar and S. S. Sapatnekar, Recursive

Bipartitioning of BDD's for Performance Driven

Synthesis of Pass Transistor Logic, Proceedings of
IEEE/ACM ICCAD, Nov. 2001, pp. 449 - 452

2. V. Bertacco, S. Minato, P. Verplaetse, L. Benini,
and G. De Micheli: "Decision Diagrams and Pass
Transistor Logic Synthesis", Stanford University
CSL Technical Report, No. CSL-TR-97-748, Dec.
1997.

3. S. Nagayama and T. Sasao, "On the minimization of
longest path length for decision diagrams,"
International Workshop on Logic and Synthesis
(IWLS-2004), June 2-4, Temecula, California,
U.S.A., pp. 28-35.

4. R. Ebendt, S. Hoehne, W. Guenther, and R.
Drechsler, “Minimization of the expected path
length in BDDs based on local changes,” Asia and
South Pacific Design Automation Conference (ASP-
DAC’2004), pp. 866-871, Yokohama, Japan, Jan.
2004.

5. S. Nagayama and T. Sasao, “Code generation for
embedded systems using heterogeneous MDDs,”
the 12th workshop on Synthesis And System
Integration of Mixed Information technologies

(SASIMI 2003), pp. 258-264, Hiroshima, Japan,
April 3-4, 2003.

6. F. Görschwin, S. Junhao and R. Drechsler, “BDD
Circuit Optimization for Path Delay Fault-
Testability”, proceedings on EUROMICRO
Symposium on Digital System Design, pp. 168-172,
2004

7. R. E. Bryant, Graph−Based Algorithm for Boolean
Function Manipulation, IEEE Trans. Computers,
Vol. 35, 1986, 677-691.

8. R. E. Bryant, On the complexity of VLSI
implementations and graph representations of
Boolean functions with application to integer
multiplication, IEEE Trans. Computers, Vol. 40,
1991, 203−213.

9. Y. Lu, J. Jain, E. Clarke and M. Fujita, Efficient
Variable Ordering using a BDD Based Sampling,
Proc. 37th Design Automation Conf., pp. 687-692,
2000.

10. K. Priyank, VLSI Logic Test, Validation and
Verification, Properties & Applications of Binary
Decision Diagrams, Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City, UT 84112, 1997.

11. S. B. Akers, Binary Decision Diagram, IEEE Trans.
Computers, Vol. 27, 1978, 509-516.

12. H. Fujii, G. Ootomo, and C. Hori, "Interleaving
based variable ordering methods for ordered binary
decision diagrams," in Int'l Conf. on CAD, pp. 38-
41, 1993.

13. E. Justin, and F. Brglez, “Design of Experiments
and evaluation of BDD ordering Heuristics”, Inter.
Journal on Software tools for Technology Transfer,
Vol. 3 , No.2 , pp. 193-206, 2001.

14. M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation
and Improvements of Boolean Comparison Method
Based on Binary Decision Diagrams,” in
Proceedings of the InternationalConference on
Computer Aided Design (ICCAD), pp. 2-5, 1988.

15. S. Malik, A. Wang, R. Brayton, and A.
Sangiovanni-Vincentelli, “Logic Verification Using
Binary Decision Diagrams in a Logic Synthesis
Environment,” in Proceedingsof the International
Conference on Computer Aided Design (ICCAD),
pp. 6-9, 1988.

16. S. Panda and F. Somenzi, “Who Are the Variables
in Your Neighborhood,”in Proceedings of the
International Conference on Computer Aided
Design (ICCAD), pp. 74-77, 1995.

17. F. Somenzi, “Efficient Manipulation of Decision
Diagrams,” in International Journal on Software
Tools for Technology Transfer (STTT), 3(2), pp.
171-181, 2001.

18. R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams,”in Proceedings of the
International Conference on Computer Aided
Design (ICCAD), pp. 42-47, 1993.

19. R. Drechsler and D. Sieling, Binary Decision
Diagrams in Theory and Practice, Springer-Verlag
Trans., 2001, pp. 112-136.

20. P.W. C. Prasad , A.Assi, M. Raseen and A. Harb
“BDD Minimization Based on Minimal Cumulative
Sub-functions Complexity “, accepted for
publications on International Conference on
Research Trends in Science and Technology,
Lebanon, March 2005.

21. F. Somenzi, CUDD: CU Decision Diagram
Package. ftp://vlsi.colorado.edu/ pub/., 2003.

22. S. Yang. Logic synthesis and optimization
benchmarks user guide version 3.0. Technical
report, Microelectronic Centre of North Caroline,
Research Triangle Park, NC, January 1991.

23. M. Hansen, H. Yalcin, and J. P. Hayes, "Unveiling
the ISCAS-85 Benchmarks: A Case Study in
Reverse Engineering," IEEE Design and Test, vol.
16, no. 3, pp. 72-80, July-Sept. 1999.

24. F. Brglez and H. Fujiwara, “ A neutral netlist of 10
combinational circuits and a target translator in
Fortran, In Inter. Symposium on Circuit and
Systems, Special Sess. On ATPG and Fault
Simulation, pp. 663-698, 1985.

