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ABSTRACT: Pass Transistor Logic (PTL) offer 
great promise than Static CMOS for the development of 
chips that can operate in high speeds. Since the delay in 
a pass-transistor chain is proportional to its length, it is 
required to minimize the longest evaluation time. 
Minimization of longest evaluation time can improve 
the performance of the circuit, and have a strong 
influence on the quality of the final implementation. 
Our approach is based on the use of Binary Decision 
diagram (BDD) to minimize the longest evaluation 
time. We perform a novel static variable ordering 
techniques which is based on the complexity of each 
function. Benchmark results show an encouraging 
approach towards minimizing the longest evaluation 
time. 
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1. INTRODUCTION 
 
Pass transistor logic offers a good area/power-delay 
trade-off alternative to static CMOS circuits in today's 
technologies. It may continue to do so even when 
leakage power becomes dominant in sub-100 nano-
meter era due to smaller area implementations as 
compared to the corresponding static CMOS 
implementations [1]. One of the main problems with the 
pass transistor network is the presence of long paths: 
the delay of a chain of n pass transistors is proportional 
to n2. The path length can be reduced by inserting 
buffers, but this increases area [2]. 

In general the evaluation time is proportional to the 
path length of BDD. Therefore minimization of path 
length can be achieved by minimizing the evaluation 
time of logic function [3]. The minimization of average 
path length (APL) proposed in [4], [5] reduces the 
average evaluation time of logic functions. The 
minimization of the average path length leads to circuits 
with a smaller depth on the paths from Root to Terminal 
nodes. By this, the circuit is optimized for speed on the 
one hand and on the other hand the number of very long 
paths is reduced [6]. The minimization of Longest path 

length ( LPL) of BDD can reduce the longest evaluation 
time which is more important for PTL, since the 
minimization of the longest evaluation time will 
improve the performance of the circuit [3]. 

During the last two decades BDDs have achieved 
great popularity as a method for representing Boolean 
functions. The BDDs advantages as canonical 
representations were observed and recognized by 
Bryant [7], [8]. The success of this kind of 
representation has attracted many researchers in the 
area of synthesis and verification of VLSI and CAD 
systems [9], [10] and BDDs became very popular data 
structures, since they allow efficient representation of 
most of today’s practical Boolean functions. The 
efficiency of BDDs is directly related to the size of their 
graph representations [11]. It appears that the node 
count is a good measurement for the complexity of the 
BDD. It is known that the complexity of BDDs is very 
sensitive to the ordering of the input variables [12]. 

Determining an optimal variable ordering is an 
NP-hard problem [13]. In the past many heuristic 
approaches have been proposed, that are based on Static 
variable ordering (SVO) algorithms [14], [15] that 
operate on a given circuit net-list and exploit topologies 
in order to find a good variable ordering, and Dynamic 
variable ordering (DVO) algorithms [16], [17], which 
assume that SVO has been successfully applied and 
operate on the resultant ROBDD to reduce its size 
through the exchange of variables [18]. A good 
ordering can lead to a smaller BDD and faster runtime, 
whereas a bad ordering can lead to an exponential 
growth in the size of BDD and hence can exceed the 
available memory. But most of these methods cannot 
guarantee an optimal result and experimental studies 
have shown that they are often up to a factor of two 
away from the best known solution [12]. In the current 
implementation, we perform a novel static variable 
ordering algorithm based on the manipulation of the 
Boolean function, which will reduce the longest 
evaluation time of BDD. The remaining of this paper is 
divided as follows: in the second section, necessary 
terminology and definitions are given. The third section 
explains the proposed method, and in the fourth section 
experimental results are given and interpreted. We 
conclude our paper with future developments of this 
research work. 



2. PRELIMINARIES 
 

Basic definitions for BDDs and PTLs are given in 
[3], [7], [11], [19]. In the following we review some of 
these definitions. 
 
Definition 1: A BDD is a directed acyclic graph (DAG). 
The graph has two sink nodes labeled 0 and 1 
representing the Boolean functions 0 and 1. Each non-
sink node is labeled with a Boolean variables v and has 
two out-edges labeled 1 (or then) and 0 (or else). Each 
non-sink node represents the Boolean function 
corresponding to its 1 edge if v=1, or the Boolean 
function corresponding to its 0 edge if v=0. 
 
Definition 2: An OBDD is a BDD in which each 
variable is encountered no more than once in any path 
and always in the same order along each path. 
 
Definition 3: An ROBDD is a BDD with the following 
properties.  
 

(i) There are no redundant nodes in which both of 
the two edges leaving the node point to the same 
next node present within the graph. If such a 
node exists it is removed and the incoming edges 
redirected to the following node. 

(ii) If two nodes point to two identical sub-graphs 
(i.e. Isomorphic sub-graphs) then one sub−graph 
will be removed and the remaining one will be 
shared by the two nodes. 

 
Definition 4: In a BDD, a sequence of edge and nodes 
leading from the root node to a terminal node is a Path. 
The number of non-terminal nodes on the path is the 
Path Length. 
 
Definition 5: The Longest Path Length (LPL) of a BDD 
denoted by LPL (BDD), is the Length of the Longest 
Path Length. 
 
 
3. PROPOSED METHOD  
 

The proposed method is a static variable ordering 
technique [20], which uses the input Boolean 
expression to find the variable order which is used to 
minimize the longest evaluation time. It is based on the 
single level Boolean function; hence if a Boolean 
function is multilevel then it is converted to single level 
function prior to applying the proposed method. MVSIS 
(Multi Valued Logic Synthesis Tool) Version 1.0 is 
used for the conversion of functions from multilevel to 
single level. The proposed method selects the next 
variable in order based on the complexity of sub-
functions derived by assigning logic 1 and logic 0 for 
that variable. The variable that produces sub-functions 
with minimum complexity is given priority over other 
variables. The complexity of the sub-functions is 
evaluated based on the number of variables (NV), 

number of product terms (NPT) and the number of 
variable occurrences (NVO). Using this method we can 
produce the BDD graph with shortest possible paths 
among each node including the terminal nodes, which 
will eventually, reduces the longest evaluation time. 
The complete steps of the proposed method are 
explained in the following algorithm: 

 
Step1: The number of inputs (N) of the Boolean 

function is recorded. The input variables are 
named as X1, X2, X3…XN; 

Step 2: Set the variable counter (M) to 1; 
Step 3: Substitute logic 0 for variable XM in the input 

function; 
Step 4: Simplify the resulting function using 

McCluskey simplification method; 
Step 5: Record the number of variables (NV), the 

number of product terms (NPT) and the number 
of variable occurrences (NVO); 

Step 6: Substitute logic 1 for variable XM in the input 
function and repeat steps 4 and 5; 

Step 7: Record the total of NV, NPT and NVO obtained 
in steps 5 and 6; 

Step 8: Repeat steps 3 to 7 for M = 2 to N; 
Step 9: The variable that produced the least NV is 

selected as next variable in the order; 
Step 10: If two or more variables have the same NV 

then selection is based on the least NPT; 
Step 11: If two or more variables have the same NPT 

then selection is based on the least NVO; 
Step 12: If still there are two or more variables that 

have equal NV, NPT and NVO, then the first of 
these variables is selected; 

Step 13: The selected variable is then substituted for 0 
and 1 in the input function and two sub- 
expressions are obtained; 

Step 14: Steps 1 to 12 are repeated for the two new sub-
expressions till we get the second variable of the 
order; 

Step 15: The above steps are repeated for 2, 4, 8 ….. 
Sub-expressions until we find all the variables of 
the order; 

 
For each the iterations described above, we note that 

the number of expressions increases but complexity of 
the expressions decreases. This decrease in complexity 
reduces the procedure to find the variables that come 
next in the variable order. The obtained variable order is 
used to build the BDD and computer the LPL using 
CUDD. The following example illustrates the proposed 
algorithm. 
 
Example: Consider the Boolean function (1) with 4 
variables x1, x2, x3 and x4. 
 

31432421 xxxxxxxxF ⋅+⋅⋅+⋅⋅=                (1) 
 
Substituting logic 0 and logic 1 for the four variables x1, 
x2, x3 and x4 we get the following sub-functions: 



4321 0 xxxx ⋅⋅⇒=                         (2) 

323432421 1 xxxxxxxxx +⇒+⋅⋅+⋅⇒=           (3) 

312 0 xxx ⋅⇒=              (4) 

3143412 1 xxxxxxx ⋅+⋅+⋅⇒=                        (5) 

4221424213 0 xxxxxxxxxx ⋅+⋅⇒⋅+⋅⋅⇒=   (6) 

114213 1 xxxxxx ⇒+⋅⋅⇒=             (7) 
31214 0 xxxxx ⋅+⋅⇒=                         (8) 

31324 1 xxxxx ⋅+⋅⇒=              (9) 
 
The parameters NV, NPT and NVO for the above six 
sub-functions are shown the table 1.  
 
Table 1. 

 
 

The main title (on the first page) should begin 1-3/8 
inches (3.49 cm) from the top edge of the page, 
centered, and in Times 14-point, boldface type. 
Capitalize the first letter of nouns, pronouns, verbs, 
adjectives, and adverbs; do not capitalize articles, 
coordinate conjunctions, or prepositions (unless the title 
begins with such a word). Leave two 12-point blank 
lines after the title. 

From table 1, variable x3 is selected as the first 
variable of the order since it has the least total of NV 
compared to other variables. Two new sub-expressions 
(5) and (6) are obtained from substituting 03 =x  and 

13 =x  respectively. From expressions (5) and (6) we 
re-start the procedure to find the second variable of the 
order. Substituting logic 0 and logic 1 for the three 
variables x1, x2 and x4 in the expressions (5) and (6) we 
obtain the following sub-functions: 
 

4213 0,0 xxxx ⋅⇒==        213 1,0 xxx ⇒==  

00,1 13 ⇒== xx              11,1 13 ⇒== xx  

00,0 23 ⇒== xx      4123 1,0 xxxx +⇒==  

123 0,1 xxx ⇒==           123 1,1 xxx ⇒==  

2143 0,0 xxxx ⋅⋅⇒==      243 1,0 xxx ⇒==  

143 0,1 xxx ⇒==           143 1,1 xxx ⇒==  
 

Table 2 indicated the values of NV, NPT and NVO 
for the twelve sub functions. From table 2 the variable 

x1 is selected as the next variable since it has the least 
number of total NV. It should be noted here that, so far 
in this example there was no a need to check the 
parameters NPT and NVO, since NV was always the 
least. The first two variables are selected, hence four 
sub- expressions are obtained from the substitution set 
(x3, x1) = (0,0), (0,1), (1,0) and (1,1). The 4 sub- 
functions can be used to find the third variable of the 
order. Performing the same procedure describe above 
one can find all the variables of the order. In our 
example, after doing all the steps we obtain the variable 
order x3, x1, x2, and x4. This variable order is used to 
build the BDD and find the LPL. 
 
Table 2. 

 
 
 
4. EXPERIMENTAL RESULTS 
 

To experimentally evaluate the algorithm presented 
in this paper, we assembled two set of results: the first 
set derives directly from the 3 variable ordering 
techniques (Symmetric Sifting, Swapping and Window 
Permutation) in CUDD package and the second set 
from the proposed method. Both set of results were 
observed using the Colorado University Decision 
Diagram (CUDD) package [21] on a Pentium IV 
machine with 512 MB RAMs. Table 3 summarizes the 
results for selected ISCAS benchmark circuits [22], 
[23], [24]. In Table 3 the first column shows a list of 
selected ISCAS benchmark circuits we have used to 
demonstrate the performance of the proposed method. 
Columns 2, 4 and 6 illustrate the results obtained for 
three CUDD variable reordering methods, namely the 
swapping, symmetric sifting and window permutation 
in terms of number of nodes and Columns 3, 5 and 7 
shows the results for the same in terms on LPL. The 
results shown in column 8 and 9 are from the 
implementation of our proposed method in terms of 
number of nodes and LPL respectively. The Gain 
factors of the proposed method against the three CUDD 
methods are denoting in Column 10 to 12.  
 The obtained results indicate the efficiency of the 
proposed method compared to other CUDD methods in 
term of minimization of Longest Path Length and 
Number of nodes. In general, the obtained results in 
Table 3 indicate that the number of nodes decreases in 
more than 90% of the  benchmarks compared to the 
Swapping and Window Permutation and almost 50% 
compared to the Symmetric sifts reordering method. 



The circuit’s i1, i6, X2, apex4, B9, pm1, clip, B12, mux 
and cm150a produces maximum gain by proposed 
algorithm compared to all the three CUDD methods. 
The benchmarks i7, X4, cc, squar5, misex2 and cm151a 
achieved better gain than two of the CUDD methods. 

The circuits alu2, decod, 5xp1, con1, cm85a, cm162a 
and cm163a produces equally good results as CUDD 
methods. 
 

        
 Table 3. 

 
 

 
5. CONCLUSIONS AND FUTURE 

WORK 
 
A new algorithm for minimizing the Evaluation time in 
BDD has been developed. The algorithm has been 
implemented using ISCAS benchmark circuits and the 
results have been compared with the three CUDD 
reordering methods which show the applicability of 
Longest Path Length of BDD to Pass Transistor Logic 
circuits. From the results obtained so far, it is quite clear 
that the minimization of the Longest Evaluation tine of 
BDD is the most important factor in determining the 
quality of the final implementation. Our future work 
and developments will be concentrated on investigating 
the LPL minimization for larger Scale benchmark 
circuits. 
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